Further Relaxations of the SDP Approach to Sensor Network Localization
نویسندگان
چکیده
Recently, a semidefinite programming (SDP) relaxation approach has been proposed to solve the sensor network localization problem. Although it achieves high accuracy in estimating sensor’s locations, the speed of the SDP approach is not satisfactory for practical applications. In this paper we propose methods to further relax the SDP relaxation; more precisely, to decompose the single semidefinite matrix cone into a set of small-size semidefinite matrix cones, which we call the smaller SDP (SSDP) approach. We present two such relaxations or decompositions; and they are, although weaker than SDP relaxation, tested to be both efficient and accurate in practical computations. The speed of the SSDP is much faster than that of the SDP approach as well as other approaches. We also prove several theoretical properties of the new SSDP relaxations.
منابع مشابه
Further Relaxations of the Semidefinite Programming Approach to Sensor Network Localization
Recently, a semidefinite programming (SDP) relaxation approach has been proposed to solve the sensor network localization problem. Although it achieves high accuracy in estimating the sensor locations, the speed of the SDP approach is not satisfactory for practical applications. In this paper we propose methods to further relax the SDP relaxation, more precisely, to relax the single semidefinit...
متن کاملComparing SOS and SDP relaxations of sensor network localization
We investigate the relationships between various sum of squares (SOS) and semidefinite programming (SDP) relaxations for the sensor network localization problem. In particular, we show that Biswas and Ye’s SDP relaxation is equivalent to the degree one SOS relaxation of Kim et al. We also show that Nie’s sparse-SOS relaxation is stronger than the edge-based semidefinite programming (ESDP) relax...
متن کاملExploiting Sparsity in SDP Relaxation for Sensor Network Localization
A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be equivalent to the sparse SDP relaxation by Waki et al. with relaxation order 1, except the size and sparsity of the ...
متن کاملA Gradient Search Method to Round the Semidefinite Programming Relaxation Solution for Ad Hoc Wireless Sensor Network Localization
In this report we develop an efficient and effective procedure to solve the distance geometry problem. This method is based on the semidefinite programming (SDP) relaxation proposed in [5, 6], and further improved by a gradient-based local search method. We first develop two alternative SDP relaxations for the distance geometry problem, which represent the (weighted) maximum-likelihood estimati...
متن کاملA multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006